Modern logic: a text in elementary symbolic logic
| Main Author: | |
|---|---|
| Format: | Print Book |
| Language: | English |
| Subito Delivery Service: | Order now. |
| Check availability: | HBZ Gateway |
| WorldCat: | WorldCat |
| Interlibrary Loan: | Interlibrary Loan for the Fachinformationsdienste (Specialized Information Services in Germany) |
| Published: |
New York, NY [u.a.]
Oxford University Press
1994
|
| In: | Year: 1994 |
| Standardized Subjects / Keyword chains: | B
Mathematical logic
|
| Further subjects: | B
Logic, Symbolic and mathematical
B Introduction B Mathematical logic B Mathematics B Logic, Modern 20th century |
| Online Access: |
Autorenbiografie (Publisher) Inhaltstext (Publisher) Verlagsangaben (Publisher) |
MARC
| LEADER | 00000cam a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 126103135 | ||
| 003 | DE-627 | ||
| 005 | 20250116230453.0 | ||
| 007 | tu | ||
| 008 | 930628s1994 xxu||||| 00| ||eng c | ||
| 010 | |a 93017282 | ||
| 016 | 7 | |a 0195080289 |2 UK | |
| 020 | |a 0195080289 |c acid-free paper |9 0-19-508028-9 | ||
| 020 | |a 0195080297 |c pbk. : acid-free paper |9 0-19-508029-7 | ||
| 020 | |a 9780195080292 |9 978-0-19-508029-2 | ||
| 035 | |a (DE-627)126103135 | ||
| 035 | |a (DE-576)037300938 | ||
| 035 | |a (DE-599)GBV126103135 | ||
| 035 | |a (OCoLC)27935532 | ||
| 035 | |a (OCoLC)27935532 | ||
| 035 | |a (DE-604)8104443170 | ||
| 035 | |a (JUB)b11040555 | ||
| 035 | |a (ZBM)0796.03002 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
| 041 | |a eng | ||
| 044 | |c XD-US |c XA-GB | ||
| 050 | 0 | |a BC135 | |
| 082 | 0 | |a 160 |q LOC |2 20 | |
| 082 | 0 | |a 511.3 | |
| 084 | |a 17,1 |2 ssgn | ||
| 084 | |a 1 |2 ssgn | ||
| 084 | |a CC 2600 |2 rvk |0 (DE-625)rvk/17610: | ||
| 084 | |a SK 130 |2 rvk |0 (DE-625)rvk/143216: | ||
| 084 | |a CC 2500 |2 rvk |0 (DE-625)rvk/17609: | ||
| 084 | |a *03-01 |2 msc | ||
| 084 | |a 03B05 |2 msc | ||
| 084 | |a 03B10 |2 msc | ||
| 084 | |a 03B20 |2 msc | ||
| 084 | |a 03B45 |2 msc | ||
| 084 | |a 03B52 |2 msc | ||
| 084 | |a 08.33 |2 bkl | ||
| 084 | |a 31.10 |2 bkl | ||
| 100 | 1 | |a Forbes, Graeme |4 aut | |
| 245 | 1 | 0 | |a Modern logic |b a text in elementary symbolic logic |c Graeme Forbes |
| 264 | 1 | |a New York, NY [u.a.] |b Oxford University Press |c 1994 | |
| 300 | |a XII, 397 S. |b graph. Darst. |c 25 cm | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
| 338 | |a Band |b nc |2 rdacarrier | ||
| 500 | |a Literaturverz. S. [391] - 392 | ||
| 505 | 8 | |a ch. 10.Intuitionistic logic -- 1. Themotivation for intuitionistic logic -- 2.Semantic consequence in intuitionistic sentential logic -- 3.Intuitionistic monadic predicate logic -- ch. 11.Fuzzy logic -- 1.Sorites paradoxes -- 2.Degrees of truth -- 3.Fuzzy semantics for LFOL -- 4.Resolution of the paradoxes -- Appendix : Using MacLogic -- Solutions to selected exercises -- Bibliography -- Index. | |
| 505 | 8 | |a pt. 1.Classical sentential logic -- ch. 1.What is logic? -- 1.Arguments -- 2.Logical form and validity -- 3.Complications -- 4. Anote to the reader -- 5.Summary -- ch. 2.First steps in symbolization -- 1. Thesentential connectives -- 2.Negations, conjunctions and disjunctions -- 3.Conditionals and biconditionals -- 4.Symbolizing entire arguments -- 5. Thesyntax of the formal language -- 6.Quotation, selective and otherwise -- 7.Summary -- ch. 3.Semantics for sentential logic -- 1.Truth-functions -- 2.Classifying formulae -- 3.Testing for validity by exhaustive search -- 4.Testing for validity by constructing interpretations -- 5.Testing for validity with semantic tableaux -- 6.Properties of semantic consequence -- 7.Expressive completeness -- 8.Non-truth-functional connectives -- 9.Summary | |
| 505 | 8 | |a ch. 4.Natural deduction in sentential logic -- 1. Theconcept of proof -- 2.Rules for conjunction and the conditional -- 3.Sequents and theorems -- 4.Rules for negation -- 5.Rules for disjunction -- 6. Thebiconditional -- 7.Heuristics -- 8.Sequent and theorem introduction -- 9.Alternative formats for proofs -- 10.Systems equivalent to NK -- 11.Semantic and deductive consequence compared -- 12.Summary -- pt. 2.Monadic predicate logic -- ch. 5.Predication and quantification in English -- 1. Adifferent type of argument -- 2.Further steps in symbolization : the existential quantifier -- 3.More symbolizations : the universal quantifier -- 4. Thesyntax of LMPL -- 5.Summary -- ch. 6.Validity and provability in monadic predicate logic -- 1.Semantics for the quantifiers -- 2.Constructing counterexamples -- 3.Deductive consequence : quantifiers in NK -- 4. Therule of existential elimination -- 5.Extensions of sequent introduction -- 5.Extensions of sequent introduction -- 6.Decision procedures -- 7.Tableaux for monadic predicate logic -- 8.Alternative formats -- 9.Summary | |
| 505 | 8 | |a pt. 3.First-order logic with identity -- ch. 7.Advanced symbolizations -- 1.N-place predicates -- 2.Identity, number and descriptions -- 3. Thesyntax of LFOL -- 4.Ambiguity -- 5.Summary -- ch. 8.Validity and provability in first-order logic with identity -- 1.Interpretations in LFOL -- 2.Demonstrating invalidity -- 3.Proofs in NK -- 4.Rules for identity in NK -- 5.Properties of binary relations -- 6.Alternative formats -- 7.Semantic consequence, deductive consequence and decidability -- 8.Some limitations of first-order logic -- 9.Summary -- pt. 4.Extensions and alternatives to classical logic -- ch. 9.Modal logic -- 1.Modal operators -- 2. Adefinition of semantic consequence for sentential modal logic -- 3. Thecanonical translation -- 4.Natural deduction in S5 -- 5.First-order modal logic : S5 semantics -- 6.First-order modal logic : natural deduction -- 7.Summary | |
| 583 | 1 | |a Archivierung prüfen |c 20240324 |f DE-4165 |z 2 |2 pdager | |
| 650 | 0 | |a Logic, Symbolic and mathematical | |
| 650 | 0 | |a Logic, Modern |y 20th century | |
| 650 | 0 | 7 | |0 (DE-588)4037951-6 |0 (DE-627)104707992 |0 (DE-576)20902741X |a Mathematische Logik |2 gnd |
| 650 | 4 | |a Mathematics | |
| 655 | 7 | |a Einführung |0 (DE-588)4151278-9 |0 (DE-627)104450460 |0 (DE-576)209786884 |2 gnd-content | |
| 689 | 0 | 0 | |d s |0 (DE-588)4037951-6 |0 (DE-627)104707992 |0 (DE-576)20902741X |2 gnd |a Mathematische Logik |
| 689 | 0 | |5 (DE-627) | |
| 856 | 4 | 2 | |u http://www.loc.gov/catdir/enhancements/fy0604/93017282-d.html |v 2015-01-15 |x Verlag |3 Verlagsangaben |
| 856 | 4 | 2 | |u http://www.loc.gov/catdir/enhancements/fy0723/93017282-b.html |v 2015-01-15 |x Verlag |3 Autorenbiografie |
| 856 | 4 | 2 | |u https://zbmath.org/?q=an:0796.03002 |m B:ZBM |v 2021-04-12 |x Verlag |y Zentralblatt MATH |3 Inhaltstext |
| 935 | |a mteo | ||
| 935 | |i Blocktest | ||
| 936 | r | v | |a CC 2600 |b Abhandlungen zur Logik und mathematischen Grundlagenforschung |k Philosophie |k Systematische Philosophie |k Logik |k Abhandlungen zur Logik und mathematischen Grundlagenforschung |0 (DE-627)1270638734 |0 (DE-625)rvk/17610: |0 (DE-576)200638734 |
| 936 | r | v | |a SK 130 |b Logik und Grundlagen, Metamathematik, |k Mathematik |k Monografien |k Logik und Grundlagen, Metamathematik, |0 (DE-627)1270918567 |0 (DE-625)rvk/143216: |0 (DE-576)200918567 |
| 936 | r | v | |a CC 2500 |b Philosophische Logik |k Philosophie |k Systematische Philosophie |k Logik |k Philosophische Logik |0 (DE-627)1270638726 |0 (DE-625)rvk/17609: |0 (DE-576)200638726 |
| 936 | b | k | |a 08.33 |j Logik |x Philosophie |0 (DE-627)106402684 |
| 936 | b | k | |a 31.10 |j Mathematische Logik |j Mengenlehre |0 (DE-627)10640847X |
| 951 | |a BO | ||
| ELC | |b 1 | ||
| ITA | |a 1 | ||
| LOK | |0 000 xxxxxcx a22 zn 4500 | ||
| LOK | |0 001 3223980717 | ||
| LOK | |0 003 DE-627 | ||
| LOK | |0 004 126103135 | ||
| LOK | |0 005 20100408155612 | ||
| LOK | |0 008 951221||||||||||||||||ger||||||| | ||
| LOK | |0 040 |a DE-21-35 |c DE-627 |d DE-21-35 | ||
| LOK | |0 541 |e 95/1206 | ||
| LOK | |0 852 |a DE-21-35 | ||
| LOK | |0 852 1 |c Es 2.102 |m p |9 00 | ||
| LOK | |0 938 |k p | ||
| LOK | |0 000 xxxxxcx a22 zn 4500 | ||
| LOK | |0 001 3223980725 | ||
| LOK | |0 003 DE-627 | ||
| LOK | |0 004 126103135 | ||
| LOK | |0 005 20100406212421 | ||
| LOK | |0 008 050820||||||||||||||||ger||||||| | ||
| LOK | |0 040 |a DE-21-46 |c DE-627 |d DE-21-46 | ||
| LOK | |0 541 |e 2000/458 | ||
| LOK | |0 689 |a s |0 1311380655 |a Symbolisierung | ||
| LOK | |0 689 |a s |0 1311380663 |a Symbolische Logik | ||
| LOK | |0 852 |a DE-21-46 | ||
| LOK | |0 852 1 |c D 4/2000,4 |m p |9 00 | ||
| LOK | |0 935 |a k046 | ||
| LOK | |0 938 |k p | ||
| LOK | |0 000 xxxxxcx a22 zn 4500 | ||
| LOK | |0 001 3223980733 | ||
| LOK | |0 003 DE-627 | ||
| LOK | |0 004 126103135 | ||
| LOK | |0 005 20100407201233 | ||
| LOK | |0 008 050322||||||||||||||||ger||||||| | ||
| LOK | |0 040 |a DE-21-119 |c DE-627 |d DE-21-119 | ||
| LOK | |0 541 |e 312/98 | ||
| LOK | |0 852 |a DE-21-119 | ||
| LOK | |0 852 1 |c F.4.1 |m p |9 00 | ||
| LOK | |0 935 |a k119 | ||
| LOK | |0 938 |k p | ||
| ORI | |a SA-MARC-ixtheoa001.raw | ||
| REL | |a 1 | ||
| STA | 0 | 0 | |a Mathematical logic,Logic,Formal logic,Logic, Symbolic and mathematical |
| STB | 0 | 0 | |a Logique mathématique,Logique mathématique |
| STC | 0 | 0 | |a Lógica matemática,Lógica algebraica |
| STD | 0 | 0 | |a Logica matematica |
| STE | 0 | 0 | |a 数理逻辑 |
| STF | 0 | 0 | |a 數理邏輯 |
| STG | 0 | 0 | |a Lógica matemática |
| STH | 0 | 0 | |a Математическая логика |
| STI | 0 | 0 | |a Μαθηματική λογική |
| SUB | |a REL | ||
| SYE | 0 | 0 | |a Logik,Algebra der Logik,Algebraische Logik,Formale Logik,Logistik,Symbolische Logik |
| SYG | 0 | 0 | |a Logik,Algebra der Logik,Algebraische Logik,Formale Logik,Logistik,Symbolische Logik |



