Modern logic: a text in elementary symbolic logic

Saved in:  
Bibliographic Details
Main Author: Forbes, Graeme (Author)
Format: Print Book
Language:English
Subito Delivery Service: Order now.
Check availability: HBZ Gateway
WorldCat: WorldCat
Interlibrary Loan:Interlibrary Loan for the Fachinformationsdienste (Specialized Information Services in Germany)
Published: New York, NY [u.a.] Oxford University Press 1994
In:Year: 1994
Standardized Subjects / Keyword chains:B Mathematical logic
Further subjects:B Logic, Symbolic and mathematical
B Introduction
B Mathematical logic
B Mathematics
B Logic, Modern 20th century
Online Access: Autorenbiografie (Publisher)
Inhaltstext (Publisher)
Verlagsangaben (Publisher)

MARC

LEADER 00000cam a2200000 c 4500
001 126103135
003 DE-627
005 20250116230453.0
007 tu
008 930628s1994 xxu||||| 00| ||eng c
010 |a  93017282  
016 7 |a 0195080289  |2 UK 
020 |a 0195080289  |c acid-free paper  |9 0-19-508028-9 
020 |a 0195080297  |c pbk. : acid-free paper  |9 0-19-508029-7 
020 |a 9780195080292  |9 978-0-19-508029-2 
035 |a (DE-627)126103135 
035 |a (DE-576)037300938 
035 |a (DE-599)GBV126103135 
035 |a (OCoLC)27935532 
035 |a (OCoLC)27935532 
035 |a (DE-604)8104443170 
035 |a (JUB)b11040555 
035 |a (ZBM)0796.03002 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XD-US  |c XA-GB 
050 0 |a BC135 
082 0 |a 160  |q LOC  |2 20 
082 0 |a 511.3 
084 |a 17,1  |2 ssgn 
084 |a 1  |2 ssgn 
084 |a CC 2600  |2 rvk  |0 (DE-625)rvk/17610: 
084 |a SK 130  |2 rvk  |0 (DE-625)rvk/143216: 
084 |a CC 2500  |2 rvk  |0 (DE-625)rvk/17609: 
084 |a *03-01  |2 msc 
084 |a 03B05  |2 msc 
084 |a 03B10  |2 msc 
084 |a 03B20  |2 msc 
084 |a 03B45  |2 msc 
084 |a 03B52  |2 msc 
084 |a 08.33  |2 bkl 
084 |a 31.10  |2 bkl 
100 1 |a Forbes, Graeme  |4 aut 
245 1 0 |a Modern logic  |b a text in elementary symbolic logic  |c Graeme Forbes 
264 1 |a New York, NY [u.a.]  |b Oxford University Press  |c 1994 
300 |a XII, 397 S.  |b graph. Darst.  |c 25 cm 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Literaturverz. S. [391] - 392 
505 8 |a ch. 10.Intuitionistic logic -- 1. Themotivation for intuitionistic logic -- 2.Semantic consequence in intuitionistic sentential logic -- 3.Intuitionistic monadic predicate logic -- ch. 11.Fuzzy logic -- 1.Sorites paradoxes -- 2.Degrees of truth -- 3.Fuzzy semantics for LFOL -- 4.Resolution of the paradoxes -- Appendix : Using MacLogic -- Solutions to selected exercises -- Bibliography -- Index. 
505 8 |a pt. 1.Classical sentential logic -- ch. 1.What is logic? -- 1.Arguments -- 2.Logical form and validity -- 3.Complications -- 4. Anote to the reader -- 5.Summary -- ch. 2.First steps in symbolization -- 1. Thesentential connectives -- 2.Negations, conjunctions and disjunctions -- 3.Conditionals and biconditionals -- 4.Symbolizing entire arguments -- 5. Thesyntax of the formal language -- 6.Quotation, selective and otherwise -- 7.Summary -- ch. 3.Semantics for sentential logic -- 1.Truth-functions -- 2.Classifying formulae -- 3.Testing for validity by exhaustive search -- 4.Testing for validity by constructing interpretations -- 5.Testing for validity with semantic tableaux -- 6.Properties of semantic consequence -- 7.Expressive completeness -- 8.Non-truth-functional connectives -- 9.Summary 
505 8 |a ch. 4.Natural deduction in sentential logic -- 1. Theconcept of proof -- 2.Rules for conjunction and the conditional -- 3.Sequents and theorems -- 4.Rules for negation -- 5.Rules for disjunction -- 6. Thebiconditional -- 7.Heuristics -- 8.Sequent and theorem introduction -- 9.Alternative formats for proofs -- 10.Systems equivalent to NK -- 11.Semantic and deductive consequence compared -- 12.Summary -- pt. 2.Monadic predicate logic -- ch. 5.Predication and quantification in English -- 1. Adifferent type of argument -- 2.Further steps in symbolization : the existential quantifier -- 3.More symbolizations : the universal quantifier -- 4. Thesyntax of LMPL -- 5.Summary -- ch. 6.Validity and provability in monadic predicate logic -- 1.Semantics for the quantifiers -- 2.Constructing counterexamples -- 3.Deductive consequence : quantifiers in NK -- 4. Therule of existential elimination -- 5.Extensions of sequent introduction -- 5.Extensions of sequent introduction -- 6.Decision procedures -- 7.Tableaux for monadic predicate logic -- 8.Alternative formats -- 9.Summary 
505 8 |a pt. 3.First-order logic with identity -- ch. 7.Advanced symbolizations -- 1.N-place predicates -- 2.Identity, number and descriptions -- 3. Thesyntax of LFOL -- 4.Ambiguity -- 5.Summary -- ch. 8.Validity and provability in first-order logic with identity -- 1.Interpretations in LFOL -- 2.Demonstrating invalidity -- 3.Proofs in NK -- 4.Rules for identity in NK -- 5.Properties of binary relations -- 6.Alternative formats -- 7.Semantic consequence, deductive consequence and decidability -- 8.Some limitations of first-order logic -- 9.Summary -- pt. 4.Extensions and alternatives to classical logic -- ch. 9.Modal logic -- 1.Modal operators -- 2. Adefinition of semantic consequence for sentential modal logic -- 3. Thecanonical translation -- 4.Natural deduction in S5 -- 5.First-order modal logic : S5 semantics -- 6.First-order modal logic : natural deduction -- 7.Summary 
583 1 |a Archivierung prüfen  |c 20240324  |f DE-4165  |z 2  |2 pdager 
650 0 |a Logic, Symbolic and mathematical 
650 0 |a Logic, Modern  |y 20th century 
650 0 7 |0 (DE-588)4037951-6  |0 (DE-627)104707992  |0 (DE-576)20902741X  |a Mathematische Logik  |2 gnd 
650 4 |a Mathematics 
655 7 |a Einführung  |0 (DE-588)4151278-9  |0 (DE-627)104450460  |0 (DE-576)209786884  |2 gnd-content 
689 0 0 |d s  |0 (DE-588)4037951-6  |0 (DE-627)104707992  |0 (DE-576)20902741X  |2 gnd  |a Mathematische Logik 
689 0 |5 (DE-627) 
856 4 2 |u http://www.loc.gov/catdir/enhancements/fy0604/93017282-d.html  |v 2015-01-15  |x Verlag  |3 Verlagsangaben 
856 4 2 |u http://www.loc.gov/catdir/enhancements/fy0723/93017282-b.html  |v 2015-01-15  |x Verlag  |3 Autorenbiografie 
856 4 2 |u https://zbmath.org/?q=an:0796.03002  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
935 |a mteo 
935 |i Blocktest 
936 r v |a CC 2600  |b Abhandlungen zur Logik und mathematischen Grundlagenforschung  |k Philosophie  |k Systematische Philosophie  |k Logik  |k Abhandlungen zur Logik und mathematischen Grundlagenforschung  |0 (DE-627)1270638734  |0 (DE-625)rvk/17610:  |0 (DE-576)200638734 
936 r v |a SK 130  |b Logik und Grundlagen, Metamathematik,  |k Mathematik  |k Monografien  |k Logik und Grundlagen, Metamathematik,  |0 (DE-627)1270918567  |0 (DE-625)rvk/143216:  |0 (DE-576)200918567 
936 r v |a CC 2500  |b Philosophische Logik  |k Philosophie  |k Systematische Philosophie  |k Logik  |k Philosophische Logik  |0 (DE-627)1270638726  |0 (DE-625)rvk/17609:  |0 (DE-576)200638726 
936 b k |a 08.33  |j Logik  |x Philosophie  |0 (DE-627)106402684 
936 b k |a 31.10  |j Mathematische Logik  |j Mengenlehre  |0 (DE-627)10640847X 
951 |a BO 
ELC |b 1 
ITA |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3223980717 
LOK |0 003 DE-627 
LOK |0 004 126103135 
LOK |0 005 20100408155612 
LOK |0 008 951221||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-35  |c DE-627  |d DE-21-35 
LOK |0 541   |e 95/1206 
LOK |0 852   |a DE-21-35 
LOK |0 852 1  |c Es 2.102  |m p  |9 00 
LOK |0 938   |k p 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3223980725 
LOK |0 003 DE-627 
LOK |0 004 126103135 
LOK |0 005 20100406212421 
LOK |0 008 050820||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-46  |c DE-627  |d DE-21-46 
LOK |0 541   |e 2000/458 
LOK |0 689   |a s  |0 1311380655  |a Symbolisierung 
LOK |0 689   |a s  |0 1311380663  |a Symbolische Logik 
LOK |0 852   |a DE-21-46 
LOK |0 852 1  |c D 4/2000,4  |m p  |9 00 
LOK |0 935   |a k046 
LOK |0 938   |k p 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3223980733 
LOK |0 003 DE-627 
LOK |0 004 126103135 
LOK |0 005 20100407201233 
LOK |0 008 050322||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-119  |c DE-627  |d DE-21-119 
LOK |0 541   |e 312/98 
LOK |0 852   |a DE-21-119 
LOK |0 852 1  |c F.4.1  |m p  |9 00 
LOK |0 935   |a k119 
LOK |0 938   |k p 
ORI |a SA-MARC-ixtheoa001.raw 
REL |a 1 
STA 0 0 |a Mathematical logic,Logic,Formal logic,Logic, Symbolic and mathematical 
STB 0 0 |a Logique mathématique,Logique mathématique 
STC 0 0 |a Lógica matemática,Lógica algebraica 
STD 0 0 |a Logica matematica 
STE 0 0 |a 数理逻辑 
STF 0 0 |a 數理邏輯 
STG 0 0 |a Lógica matemática 
STH 0 0 |a Математическая логика 
STI 0 0 |a Μαθηματική λογική 
SUB |a REL 
SYE 0 0 |a Logik,Algebra der Logik,Algebraische Logik,Formale Logik,Logistik,Symbolische Logik 
SYG 0 0 |a Logik,Algebra der Logik,Algebraische Logik,Formale Logik,Logistik,Symbolische Logik